The Figge-Fencl Quantitative Physicochemical Model
of Human Acid-Base Physiology (Version 3.0)

by James J. Figge, MD

Copyright 2003 - 2022 James J. Figge.
Published 8 October, 2012; updated on 28 April, 2013; updated on 27 October, 2013;
on www.acid-base.org.


Statistical Validation of the Figge-Fencl Quantitative Physicochemical Model
(Version 3.0)

albumin solutions

Figure 1. pH of albumin-containing solutions as calculated by the Figge-Fencl quantitative physicochemical model (version 3.0) (y-axis), versus measured pH (x-axis). Experimental data cover the pH range of 6.85 to 7.94. Experimental data (n = 65) are from Figge, Rossing and Fencl, J Lab Clin Med. 1991; 117: 453-467. The slope of the regression line is 1.0068 (98% confidence limits: 0.9672 to 1.0464). Thus, the slope is not significantly different than 1.0000. The intercept is -0.0469.
R = 0.99157, and R2 = 0.9832.


Paired t Test.

The mean difference, { Σ(calculated pH - measured pH) } / 65 = 0.0034 (+/- 0.0329 Standard Deviation).

The 98% confidence interval for the mean difference is calculated using: t (n-1, alpha/2) = 2.386; where n = 65; alpha=0.02.

The 98% confidence interval for the mean difference is 0.0034 +/- (2.386)(0.0329)/SQRT(65) = 0.0034 +/- 0.0097.

Hence, the mean difference is not statistically different than zero.


Reference Data

Sample Number, SID, PCO2, Pi, Albumin, Measured pH, Calculated pH, Difference, Difference Squared


DATA 1 , 49.8 , 39.3 , 1.1 , 7.2 , 7.388 , 7.45186896168161 , 6.38689616816119E-02 , 4.07924426628721E-03
DATA 2 , 45.4 , 40 , 1 , 7 , 7.383 , 7.39164865761995 , 8.64865761995315E-03 , 7.47992786271737E-05
DATA 3 , 45.4 , 26.1 , 1 , 7 , 7.521 , 7.55122460937127 , 3.02246093712748E-02 , 9.13527011646153E-04
DATA 4 , 45.4 , 38.1 , 1 , 7 , 7.389 , 7.40980515582487 , 2.08051558248696E-02 , 4.32854508897107E-04
DATA 5 , 45.4 , 62.9 , 1 , 7 , 7.217 , 7.22307206084952 , 6.07206084951795E-03 , 3.68699229602486E-05
DATA 6 , 32.2 , 23.4 , 1.2 , 6.6 , 7.315 , 7.32882901327685 , 1.38290132768448E-02 , 1.9124160821115E-04
DATA 7 , 32.2 , 35 , 1.2 , 6.6 , 7.194 , 7.19565304508433 , 1.65304508432751E-03 , 2.73255805081934E-06
DATA 8 , 32.2 , 68.6 , 1.2 , 6.6 , 6.979 , 6.97039783885702 ,-8.60216114297518E-03 , 7.39971763297121E-05
DATA 9 , 71.3 , 28.9 , 1.1 , 6.8 , 7.819 , 7.82143116742373 , 2.43116742372518E-03 , 5.91057504218252E-06
DATA 10 , 71.3 , 37.7 , 1.1 , 6.8 , 7.716 , 7.71349582821131 ,-2.50417178869267E-03 , 6.27087634728423E-06
DATA 11 , 71.3 , 65.4 , 1.1 , 6.8 , 7.504 , 7.49055102257989 ,-1.34489774201061E-02 , 1.80874993646523E-04
DATA 12 , 70.2 , 26.4 , 1 , 6.8 , 7.85 , 7.8502791498322 , 2.7914983220434E-04 , 7.79246288197109E-08
DATA 13 , 70.2 , 37.9 , 1 , 6.8 , 7.719 , 7.70358445285819 ,-1.54155471418056E-02 , 2.37639093681231E-04
DATA 14 , 70.2 , 65.3 , 1 , 6.8 , 7.513 , 7.48366857494693 ,-2.93314250530674E-02 , 8.6033249564371E-04
DATA 15 , 45.9 , 30.8 , 1 , 7.1 , 7.447 , 7.49262359552085 , 4.56235955208539E-02 , 2.08151246825048E-03
DATA 16 , 45.9 , 38.4 , 1 , 7.1 , 7.375 , 7.41029045451432 , 3.52904545143247E-02 , 1.24541617982762E-03
DATA 17 , 45.9 , 85 , 1 , 7.1 , 7.094 , 7.11468532006256 , 2.06853200625625E-02 , 4.27882466090651E-04
DATA 18 , 70.2 , 22.5 , 1 , 6.8 , 7.935 , 7.91523252509069 ,-1.97674749093126E-02 , 3.90753064290304E-04
DATA 19 , 70.2 , 40.2 , 1 , 6.8 , 7.716 , 7.6797193539096 ,-3.62806460903959E-02 , 1.31628528073656E-03
DATA 20 , 70.2 , 83.5 , 1 , 6.8 , 7.423 , 7.38464369426947 ,-3.83563057305292E-02 , 1.47120618929383E-03
DATA 21 , 45.8 , 22.1 , 1 , 3.5 , 7.746 , 7.77916299365461 , 3.31629936546083E-02 , 1.09978414813559E-03
DATA 22 , 45.8 , 39.9 , 1 , 3.5 , 7.518 , 7.53625158267096 , 1.82515826709571E-02 , 3.3312026999478E-04
DATA 23 , 45.8 , 85.9 , 1 , 3.5 , 7.218 , 7.22261464502662 , 4.61464502662423E-03 , 2.12949487217478E-05
DATA 24 , 24.2 , 21.9 , 0.9 , 3.4 , 7.446 , 7.3886169437319 ,-5.73830562680957E-02 , 3.29281514666744E-03
DATA 25 , 24.2 , 39.8 , 0.9 , 3.4 , 7.226 , 7.16390463616699 ,-6.20953638330102E-02 , 3.85583420955391E-03
DATA 26 , 24.2 , 69.7 , 0.9 , 3.4 , 7.018 , 6.95350919384509 ,-6.44908061549065E-02 , 4.15906407850973E-03
DATA 27 , 63.7 , 40.2 , 1 , 3.6 , 7.676 , 7.70913776068483 , 3.31377606848253E-02 , 1.09811118320475E-03
DATA 28 , 63.7 , 86.7 , 1 , 3.6 , 7.369 , 7.38836321781855 , 0.019363217818551 , 3.74934204288651E-04
DATA 29 , 75.5 , 38.6 , 1 , 6.7 , 7.711 , 7.74218448600732 , 3.11844860073176E-02 , 9.72472167540587E-04
DATA 30 , 76.4 , 38.2 , 1 , 7.3 , 7.702 , 7.73856468789745 , 3.65646878974513E-02 , 1.33697640103802E-03
DATA 31 , 65.9 , 37.9 , 1 , 7.3 , 7.63 , 7.65034119295888 , 2.03411929588766E-02 , 4.13764130990251E-04
DATA 32 , 60.2 , 35.1 , 0.7 , 7.6 , 7.572 , 7.61867349362001 , 4.66734936200082E-02 , 2.17841500669694E-03
DATA 33 , 58.9 , 41 , 1 , 1.7 , 7.718 , 7.71041089866776 ,-7.58910133223978E-03 , 5.75944590310036E-05
DATA 34 , 58.9 , 67.9 , 1 , 1.7 , 7.51 , 7.49600895750336 ,-1.39910424966363E-02 , 1.95749270142683E-04
DATA 35 , 58.9 , 88 , 1 , 1.7 , 7.399 , 7.38586627563927 ,-1.31337243607268E-02 , 1.72494715583548E-04
DATA 36 , 70.4 , 38.2 , 1 , 7 , 7.684 , 7.69671562733129 , 1.27156273312865E-02 , 1.6168717842816E-04
DATA 37 , 70.4 , 65.4 , 1 , 7 , 7.477 , 7.47992098843679 , 2.92098843678801E-03 , 8.53217344784925E-06
DATA 38 , 70.4 , 85.7 , 1 , 7 , 7.39 , 7.37133328034543 ,-1.86667196545747E-02 , 3.48446422662484E-04
DATA 39 , 53.5 , 38.7 , 1 , 6.2 , 7.551 , 7.54521409911104 ,-5.78590088896469E-03 , 3.34766490969224E-05
DATA 40 , 53.5 , 68.4 , 1 , 6.2 , 7.348 , 7.32078778464347 ,-2.72122153565286E-02 , 7.40504664610092E-04
DATA 41 , 53.5 , 86.3 , 1 , 6.2 , 7.24 , 7.22954700456467 ,-0.010452995435335 , 1.09265113571133E-04
DATA 42 , 51.2 , 41.2 , 0.9 , 1.9 , 7.598 , 7.63584546966013 , 3.78454696601258E-02 , 1.4322795737955E-03
DATA 43 , 51.2 , 69.8 , 0.9 , 1.9 , 7.378 , 7.41301136161201 , 3.50113616120069E-02 , 1.22579544192671E-03
DATA 44 , 51.2 , 87.7 , 0.9 , 1.9 , 7.307 , 7.31663671531715 , 9.63671531714461E-03 , 9.28662821036895E-05
DATA 45 , 32.5 , 22.5 , 1 , 8 , 7.32 , 7.25471883593127 ,-0.065281164068729 , 4.26163038216831E-03
DATA 46 , 32.5 , 38.9 , 1 , 8 , 7.144 , 7.09191065700725 ,-5.20893429927529E-02 , 2.71329965341666E-03
DATA 47 , 32.5 , 59.2 , 1 , 8 , 7.006 , 6.96329846512526 ,-4.27015348747375E-02 , 1.82342108065842E-03
DATA 48 , 28.5 , 22.7 , 1 , 2.9 , 7.416 , 7.51374596869573 , 9.77459686957296E-02 , 9.55427439626655E-03
DATA 49 , 28.5 , 40.3 , 1 , 2.9 , 7.213 , 7.28575872583315 , 7.27587258331477E-02 , 5.29383218486315E-03
DATA 50 , 28.5 , 58.6 , 1 , 2.9 , 7.068 , 7.13776919478551 , 6.97691947855059E-02 , 4.86774054101787E-03
DATA 51 , 22.8 , 23.1 , 1 , 1.6 , 7.46 , 7.46129691042006 , 1.29691042006019E-03 , 1.68197663766071E-06
DATA 52 , 22.8 , 40.2 , 1 , 1.6 , 7.246 , 7.23515126854181 ,-1.08487314581875E-02 , 1.17694974251868E-04
DATA 53 , 22.8 , 60.6 , 1 , 1.6 , 7.083 , 7.06834687432274 ,-0.014653125677258 , 2.14714092113517E-04
DATA 54 , 23.7 , 22.6 , 1 , 5.7 , 7.125 , 7.15467195678502 , 2.96719567850232E-02 , 8.80425019452285E-04
DATA 55 , 23.7 , 40 , 1 , 5.7 , 6.968 , 6.981773449108 , 1.37734491080046E-02 , 1.89707900330793E-04
DATA 56 , 23.7 , 58 , 1 , 5.7 , 6.849 , 6.86582762748003 , 1.68276274800299E-02 , 2.83169046606656E-04
DATA 57 , 21.4 , 23 , 1 , 3.5 , 7.254 , 7.26822499139234 , 1.42249913923447E-02 , 2.0235038011228E-04
DATA 58 , 21.4 , 40.7 , 1 , 3.5 , 7.051 , 7.06323277764022 , 1.22327776402233E-02 , 1.49640848795148E-04
DATA 59 , 21.4 , 58.3 , 1 , 3.5 , 6.924 , 6.93370805447921 , 9.70805447921119E-03 , 9.42463217713325E-05
DATA 60 , 67.5 , 39.7 , 1 , 7.2 , 7.654 , 7.64973710908089 ,-4.26289091911158E-03 , 1.8172238988244E-05
DATA 61 , 67.5 , 56.9 , 1 , 7.2 , 7.508 , 7.50571109482553 ,-2.28890517447145E-03 , 5.23908689772216E-06
DATA 62 , 67.5 , 87 , 1 , 7.2 , 7.347 , 7.33646802732255 ,-1.05319726774473E-02 , 1.10922448478497E-04
DATA 63 , 62.5 , 40.1 , 1 , 3.8 , 7.706 , 7.69481228571385 ,-0.011187714286149 , 1.25164950948501E-04
DATA 64 , 62.5 , 57.5 , 1 , 3.8 , 7.561 , 7.54473308031447 ,-1.62669196855276E-02 , 2.64612676055406E-04
DATA 65 , 62.5 , 91.2 , 1 , 3.8 , 7.386 , 7.35308220679872 ,-3.29177932012827E-02 , 1.08358110924242E-03


N = 65


Checksum1 for pHm = 481.218
Checksum2 for SID = 3194.9
Checksum3 for PCO2 = 3210.8
Checksum4 for Pi = 65.1
Checksum5 for Alb = 342.8
Checksum6 for pH = 481.439307340304


Sum of Deviations = 0.221307340304365
Mean Deviation = 3.40472831237484E-03


Sum of Absolute Deviations = 1.63638280045148
Mean Absolute Deviation = 2.51751200069458E-02


Sum of Squares of Deviations = 7.00002270873043E-02
Root Mean Square Deviation = 3.28165593957367E-02


Standard Deviation = 3.28934681300942E-02


HIS14 = 5.1
HIS15 = 6.7
HIS16 = 6.2


LYS1 = 5.8 , n1 = 2
LYS2 = 6.15 , n2 = 2
LYS3 = 7.51 , n3 = 2
LYS4 = 7.685 , n4 = 2
LYS5 = 7.86 , n5 = 1
LYS6 = 10.3 , n6 = 50


slope = 1.00678874215608
intercept = -4.68547320397751E-02
intercept = -4.68547320394102E-02 (verify)
r = 0.991565222939416
r^2 = 0.983201591342893
Variance = 1.09623723925786E-03
Variance of slope = 2.74891760302995E-04
Stnd Deviation of slope = 1.65798600809233E-02
98% confidence interval for the slope = 0.967212616142919 to 1.04636486816925


Source Code


Note: This code is for educational use only; it is not to be used for clinical purposes.


Sub Model()


Rem: Figge-Fencl Quantitative Physicochemical Model
Rem: of Human Acid-Base Physiology (Version 3.0).
Rem:
Rem: Program by James J. Figge, MD, MBA. Updated September, 2012.
Rem: Copyright 2003 - 2022 James J. Figge. Published 8 October, 2012.


Close #1
Dim pHm(65), SID(65), PCO2(65), Pi(65), Alb(65)


rownum = 1
colnum = 1
rownum = ActiveCell.Row
colnum = ActiveCell.Column


Worksheets("Sheet1").Activate


sum1 = 0
sum2 = 0
sum3 = 0
sum4 = 0
sum5 = 0


For rownum = 1 To 65


pHm(rownum) = ActiveSheet.Cells(rownum, 2)
SID(rownum) = ActiveSheet.Cells(rownum, 3)
PCO2(rownum) = ActiveSheet.Cells(rownum, 4)
Pi(rownum) = ActiveSheet.Cells(rownum, 5)
Alb(rownum) = ActiveSheet.Cells(rownum, 6)


sum1 = sum1 + pHm(rownum)
sum2 = sum2 + SID(rownum)
sum3 = sum3 + PCO2(rownum)
sum4 = sum4 + Pi(rownum)
sum5 = sum5 + Alb(rownum)


Next rownum


Rem: Kc1 is derived from the parameters in the Henderson-Hasselbalch
Rem: equation. pK = 6.1; a = 0.230 mM / kPa; 1 Torr = 0.13332236842105 kPa
Rem: The value of Kc1 is 2.44E-11 (Eq / L)^2 / Torr.


Rem: Kc2 is calculated from Harned and Scholes (1941) for 37 degrees C and ionic
Rem: strength 0.15 M. The value of Kc2 is 5.5E-11 mol / L x 2 = 1.1E-10 Eq / L.


Rem: K1, K2, and K3 for the phosphoric acid - phosphate system are from Sendroy and
Rem: Hastings (1927).


Const kw = 0.000000000000044


Const Kc1 = 0.0000000000244
Const Kc2 = 0.00000000011


Const K1 = 0.0122
Const K2 = 0.000000219
Const K3 = 0.00000000000166


Const LYS1 = 5.8
Const LYS2 = 6.15
Const LYS3 = 7.51
Const LYS4 = 7.685
Const LYS5 = 7.86
Const LYS6 = 10.3


Const HIS14 = 5.1
Const HIS15 = 6.7
Const HIS16 = 6.2


ss = 0
s = 0
abvs = 0
sx = 0
sxx = 0
sy = 0
syy = 0
sxy = 0
sum6 = 0


Open "albumin-pH-output" For Output As #2


For j = 1 To 65


High = 14
Low = 1


calculatepH:
pH = (High + Low) / 2
Rem: H is hydrogen ion activity (also used as an approximation of [H+])
H = 10 ^ -pH


HCO3 = Kc1 * PCO2(j) / H
CO3 = Kc2 * HCO3 / H


FNX = K1 * H * H + 2 * K1 * K2 * H + 3 * K1 * K2 * K3
FNY = H * H * H + K1 * H * H + K1 * K2 * H + K1 * K2 * K3
FNZ = FNX / FNY
P = Pi(j) * FNZ


Netcharge = SID(j) + 1000 * (H - kw / H - HCO3 - CO3) - P


Rem: NB accounts for histidine pK shift due to the NB transition
NB = 0.4 * (1 - (1 / (1 + (10 ^ (pH - 6.9)))))


Rem: Calculate charge on albumin
Rem: alb2 accumulates results


Rem: cysteine residue
alb2 = -1 / (1 + 10 ^ (-(pH - 8.5)))


Rem: glutamic acid and aspartic acid residues
alb2 = alb2 - 98 / (1 + 10 ^ (-(pH - 3.9)))


Rem: tyrosine residues
alb2 = alb2 - 18 / (1 + 10 ^ (-(pH - 11.7)))


Rem: arginine residues
alb2 = alb2 + 24 / (1 + 10 ^ (pH - 12.5))


Rem: lysine residues
alb2 = alb2 + 2 / (1 + 10 ^ (pH - LYS1))
alb2 = alb2 + 2 / (1 + 10 ^ (pH - LYS2))


alb2 = alb2 + 2 / (1 + 10 ^ (pH - LYS3))
alb2 = alb2 + 2 / (1 + 10 ^ (pH - LYS4))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - LYS5))


alb2 = alb2 + 50 / (1 + 10 ^ (pH - LYS6))


Rem: 16 different histidine residues
Rem: correction factor to convert HIS pKa from 25 deg C to 37 deg C is approx -0.27
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 7.12 + NB))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 7.22 + NB))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 7.1 + NB))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 7.49 + NB))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 7.01 + NB))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 7.31))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 6.75))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 6.36))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 4.85))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 5.76))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 6.17))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 6.73))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 5.82))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - HIS14))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - HIS15))
alb2 = alb2 + 1 / (1 + 10 ^ (pH - HIS16))
Rem: amino terminus
alb2 = alb2 + 1 / (1 + 10 ^ (pH - 8))


Rem: carboxyl terminus
alb2 = alb2 - 1 / (1 + 10 ^ (-(pH - 3.1)))


alb2 = alb2 * 1000 * 10 * Alb(j) / 66500


Netcharge = Netcharge + alb2


If Abs(Netcharge) < 0.0000001 Then GoTo complete
If Netcharge < 0 Then High = pH
If Netcharge > 0 Then Low = pH
GoTo calculatepH


complete:
Delta = (pH - pHm(j))
sum6 = sum6 + pH


ss = ss + Delta * Delta
s = s + Delta
abvs = abvs + Abs(Delta)
sx = sx + pHm(j)
sxx = sxx + pHm(j) * pHm(j)
sy = sy + pH
syy = syy + pH * pH
sxy = sxy + pHm(j) * pH


Print #2, "DATA"; j; ","; SID(j); ","; PCO2(j); ","; Pi(j); ","; Alb(j); ","; pHm(j); ","; pH; ","; Delta; ","; Delta * Delta

Next j


Close #2


Open "model-results" For Output As #1


n = 65
Print #1, "N = ", n
Print #1,
Print #1, "Checksum1 for pHm =", sum1
Print #1, "Checksum2 for SID =", sum2
Print #1, "Checksum3 for PCO2 =", sum3
Print #1, "Checksum4 for Pi =", sum4
Print #1, "Checksum5 for Alb =", sum5
Print #1, "Checksum6 for pH = ", sum6
Print #1, " "


Print #1, "Sum of Deviations = ", s
Print #1, "Mean Deviation = ", s / n
Print #1,


Print #1, "Sum of Absolute Deviations = ", abvs
Print #1, "Mean Absolute Deviation = ", abvs / n
Print #1,


Print #1, "Sum of Squares of Deviations = ", ss
Print #1, "Root Mean Square Deviation = ", Sqr(ss / n)
Print #1,


SD = Sqr((n * ss - s * s) / (n * (n - 1)))
Print #1, "Standard Deviation = ", SD


Print #1,
Print #1, " "
Print #1, "HIS14 = ", HIS14
Print #1, "HIS15 = ", HIS15
Print #1, "HIS16 = ", HIS16
Print #1, " "


Print #1, "LYS1 = ", LYS1, "n1 = 2"
Print #1, "LYS2 = ", LYS2, "n2 = 2"
Print #1, "LYS3 = ", LYS3, "n3 = 2"
Print #1, "LYS4 = ", LYS4, "n4 = 2"
Print #1, "LYS5 = ", LYS5, "n5 = 1"
Print #1, "LYS6 = ", LYS6, "n6 = 50"


Slope = (n * sxy - sx * sy) / (n * sxx - sx * sx)
incpt = (sy * sxx - sx * sxy) / (n * sxx - sx * sx)


vincpt = sy / n - Slope * sx / n


r = (n * sxy - sx * sy) / Sqr(n * sxx - sx * sx) / Sqr(n * syy - sy * sy)


Var = (syy - incpt * sy - Slope * sxy) / (n - 2)


varslope = n * Var / (n * sxx - sx * sx)


stndevslope = Sqr(varslope)


Rem: t(n-2, alpha/2) for n=65 is 2.3870, where alpha=0.02
t = 2.387


Lconfint = Slope - t * stndevslope
Uconfint = Slope + t * stndevslope


Print #1, " "
Print #1, "slope = ", Slope
Print #1, "intercept = ", incpt
Print #1, "intercept = ", vincpt, "(verify)"
Print #1, "r = ", r
Print #1, "r^2 = ", r * r
Print #1, "Variance = ", Var
Print #1, "Variance of slope = ", varslope
Print #1, "Stnd Deviation of slope = ", stndevslope
Print #1, "98% confidence interval for the slope = ", Lconfint, " to ", Uconfint


Close #1


End Sub


Input Data


01  7.388  49.8  39.3  1.1  7.2
02  7.383  45.4  40  1  7
03  7.521  45.4  26.1  1  7
04  7.389  45.4  38.1  1  7
05  7.217  45.4  62.9  1  7
06  7.315  32.2  23.4  1.2  6.6
07  7.194  32.2  35  1.2  6.6
08  6.979  32.2  68.6  1.2  6.6
09  7.819  71.3  28.9  1.1  6.8
10  7.716  71.3  37.7  1.1  6.8
11  7.504  71.3  65.4  1.1  6.8
12  7.850  70.2  26.4  1  6.8
13  7.719  70.2  37.9  1  6.8
14  7.513  70.2  65.3  1  6.8
15  7.447  45.9  30.8  1  7.1
16  7.375  45.9  38.4  1  7.1
17  7.094  45.9  85  1  7.1
18  7.935  70.2  22.5  1  6.8
19  7.716  70.2  40.2  1  6.8
20  7.423  70.2  83.5  1  6.8
21  7.746  45.8  22.1  1  3.5
22  7.518  45.8  39.9  1  3.5
23  7.218  45.8  85.9  1  3.5
24  7.446  24.2  21.9  0.9  3.4
25  7.226  24.2  39.8  0.9  3.4
26  7.018  24.2  69.7  0.9  3.4
27  7.676  63.7  40.2  1  3.6
28  7.369  63.7  86.7  1  3.6
29  7.711  75.5  38.6  1  6.7
30  7.702  76.4  38.2  1  7.3
31  7.630  65.9  37.9  1  7.3
32  7.572  60.2  35.1  0.7  7.6
33  7.718  58.9  41  1  1.7
34  7.510  58.9  67.9  1  1.7
35  7.399  58.9  88  1  1.7
36  7.684  70.4  38.2  1  7
37  7.477  70.4  65.4  1  7
38  7.390  70.4  85.7  1  7
39  7.551  53.5  38.7  1  6.2
40  7.348  53.5  68.4  1  6.2
41  7.240  53.5  86.3  1  6.2
42  7.598  51.2  41.2  0.9  1.9
43  7.378  51.2  69.8  0.9  1.9
44  7.307  51.2  87.7  0.9  1.9
45  7.320  32.5  22.5  1  8
46  7.144  32.5  38.9  1  8
47  7.006  32.5  59.2  1  8
48  7.416  28.5  22.7  1  2.9
49  7.213  28.5  40.3  1  2.9
50  7.068  28.5  58.6  1  2.9
51  7.460  22.8  23.1  1  1.6
52  7.246  22.8  40.2  1  1.6
53  7.083  22.8  60.6  1  1.6
54  7.125  23.7  22.6  1  5.7
55  6.968  23.7  40  1  5.7
56  6.849  23.7  58  1  5.7
57  7.254  21.4  23  1  3.5
58  7.051  21.4  40.7  1  3.5
59  6.924  21.4  58.3  1  3.5
60  7.654  67.5  39.7  1  7.2
61  7.508  67.5  56.9  1  7.2
62  7.347  67.5  87  1  7.2
63  7.706  62.5  40.1  1  3.8
64  7.561  62.5  57.5  1  3.8
65  7.386  62.5  91.2  1  3.8


Link to Albumin Titration Curve (Model Version 3.0)

Return to Home Page


Valid HTML 4.0!